THE NORM THEOREM FOR SEMISINGULAR QUADRATIC FORMS
AHMED LAGHRIBI' AND DIKSHA MUKHIJA?

ABSTRACT. Let F' be afield of characteristic 2. The aim of this paper is to give a complete proof
of the norm theorem for singular F'-quadratic forms which are not totally singular, i.e., we give
necessary and sufficient conditions for which a normed irreducible polynomial of F'[z1, ..., 2]
becomes a norm of such a quadratic form over the rational function field F'(x1,...,x,). This
completes partial results proved on this question in [9]. Combining the present work with the
papers [1] and [8], we obtain the norm theorem for any type of quadratic forms in characteristic
2.

1. INTRODUCTION

Let F' be an arbitrary field. Given a field extension K/ F, a natural problem in the algebraic
theory of quadratic forms consists of studying the behavior of F'-quadratic forms after scalar ex-
tension to K. This problem first started by a result of Witt [11] characterizing irreducible poly-
nomials p in one variable for which a given anisotropic F'-quadratic form becomes isotropic over
F(p) (the function field of the affine hypersurface given by p = 0). Few years later, Knebusch
studied the problem of metabolicity of F-bilinear forms over F'(p), where p € F[zy,. .., x,]
is normed irreducible (normed means that the coefficient of the highest monomial occurring
in p with respect to the lexicographical ordering is 1). To this end, he introduced in [6], his
specialization theory for quadratic and bilinear forms. As a consequence, he proved an impor-
tant result known as the norm theorem [6, Theorem 4.2]. The result states that, for a normed

irreducible polynomial p € F'[zy,xs,...,x,], an anisotropic bilinear form b over F' becomes
metabolic over F'(p) if and only if p is a norm of b over F'(zy,...,x,), i.e., b is isometric to pb
over Fl(x1,...,x,).

Obviously, Knebusch’s norm theorem cited before extends to quadratic forms in character-
istic different from 2. Concerning quadratic forms in characteristic 2, we distinguish between
three types: nonsingular forms, semisingular forms and totally singular forms (see Section 2).
Baeza extended the norm theorem to nonsingular forms [1]. His proof uses Knebusch’s norm
theorem for quadratic form in characteristic not 2 via a lifting argument from characteristic 2
to 0, which is based on the idea that any field of characteristic 2 can be viewed as the residue
field of a complete discrete valued ring of characteristic 0. For the case of singular quadratic
forms (i.e., semisingular or totally singular quadratic forms) in characteristic 2 the situation is
more subtle. The main ingredient used in this case is the notion of quasi-hyperbolicity which
is an extension of the notion of hyperbolicity. Recall that a singular form ¢ is quasi-hyperbolic
if dim ¢ is even and i;(¢) > dim /2, where i;() is the total index of ¢ (see Section 2).
Note that a restrictive notion of quasi-hyperbolicity (i.e., i;(¢) = dim ¢/2) was first used by
Laghribi, but it turns out that these two notions coincide over the field F'(p) for which we are in-
terested here (see Proposition 2.2(2.b)). Based on the notion of quasi-hyperbolicity, Laghribi [8]
and independently Hoffmann [5] proved the norm theorem for totally singular quadratic forms.
Later, Laghbribi and Mammone gave partial results on norm theorem for semisingular quadratic
forms [9]. More precisely, one of the result given by them asserts that whenever an anisotropic
semisingular quadratic form ¢ has a normed irreducible polynomial p € Flxy,...,z,]| as a

MSC: 11E04, 11E81
Date: October 20, 2020.
Key words and phrases. Quadratic form, quasi-hyperbolicity, norm theorem, function field of an irreducible
polynomial, transfer.
1



norm, then it is quasi-hyperbolic over F'(p). The reverse implication has also been proved
in their paper for the special case when the polynomial p is given by a quadratic form which
represents 1.

From now on we consider F' to be a field of characteristic 2. The aim of this paper is the
following result which completes the proof of the norm theorem for semisingular quadratic
forms.

Theorem 1.1. Let p be a nondefective semisingular quadratic form of dimension > 3 over F),
and let p € Fxq,xs,...,x,]| be a normed irreducible polynomial and K = F(x1, 5, ..., x,).
Then, the following two conditions are equivalent:

(1) ¢ is quasi-hyperbolic over F(p).
(2) pis anorm of ¢.

As we said before implication (2) = (1) has already been proved in [9]. So we will focus
on the proof of the implication (1) = (2) which will be done in two steps. First, we give the
proof in the case of a normed irreducible polynomial in one variable. In this step we first prove
the theorem for the polynomial 22" + d, and then generalize it to any one variable normed ir-
reducible polynomial using Scharlau’s transfer. In the second step, we will prove the theorem
for a polynomial in more than one variable for which we will use an induction on the num-
ber of variables due to Knebusch. To proceed with the induction we will need the following
proposition.

Proposition 1.2. Let ¢ be a nondefective semisingular quadratic form of dimension > 3 over
F, f € Flxy,...,x,)and K = F(xy,...,x,). Let p be a normed irreducible polynomial which
divides [ with an odd power. If f is a norm of pg, then p is also a norm of ¢i.

For a general polynomial (not necessarily irreducible), we will use Theorem 1.1 to get the
following norm criteria.

Corollary 1.3. Let ¢ be a nondefective semisingular quadratic form and q € Fl[xy,. .., x,]
such that ¢ = cpi*...psr with c € F* .= F\ {0}, ¢, € Ny and p; € Flzy,...,x,] normed
irreducible polynomial for any 1 < i < r. Then, the following two conditions are equivalent:
(1) qis anorm of ¢.

(2) cis anorm of p and pr(p,) is quasi-hyperbolic when €; is odd.

2. BACKGROUND

Recall that any quadratic form ¢ over F’' can be written up to isometry as follows:
2.1) = [ar,bi] L [as,bo] L ... Llar,b] Ler) L. L(c,),

where ~ and | denotes the isometry and orthogonal sum of quadratic forms, and [a, b] (resp.
(a)) denotes the quadratic form ax? + xy + by? (resp. az?). Obviously, dim ¢ = 2r + s (the
dimension of ). The quadratic form (c¢;) L ... L {(c,) is unique up to isometry, we call it the
quasilinear part of , and denote it by ql(). As in equation (2.1), the form ¢ is called:

e nonsingular (resp. singular) if s = 0 (resp. s > 0),

e totally singular if r = 0,

e semisingular if » > 0 and s > 0.

For ay,...,a, € F,let (ay,...,a,) denote the totally singular quadratic form (a;) L ... L
(an).
A quadratic form ¢ of underlying F'-vector space V' is called isotropic if there exists v €

V'\ {0} such that p(v) = 0, otherwise ¢ is called anisotropic.
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For an integer n > 0 and ¢ a quadratic form, we denote n x ¢ for the quadratic form
oLl ... L
N————

n times

Recall that any quadratic form ¢ over F' uniquely decomposes as follows:
© >~ @ L1 x[0,0] Lj x(0),

where ¢,,, is an anisotropic quadratic form. We call ,,, the anisotropic part of ¢, and the
integer ¢ (resp. ) is called the Witt index (resp. the defect index) of . The integer i + 7 is
called the total index of ¢. We denote i, j and i + j by iw (¢), i4(¢) and i;(), respectively.
The form ¢ is called nondefective if i4(p) = 0.

Two quadratic forms ¢ and ¢, are called Witt-equivalent, denoted 7 ~ o, if there exists
m,n € N such that po; L m x [0,0] ~ ps L n x [0,0].

A quadratic form (¢, V') represents « € F' if there exists v € V such that p(v) = a. We
denote by Dr (i) the set of values in F'™* represented by ¢.

We will need the following cancellation result:

Proposition 2.1. ([6, Proposition 1.2] for (1), [4, Lemma 2.6] for (2)) Let p1, @2 be two qua-
dratic forms (possibly singular). Suppose that one of the following conditions holds:

(1) p1 LY >~y 1 1 for some nonsingular form 1),
(2) p1 L s x{0) >~ ¢y L s x(0) for some integer s > 0 and p1, po nondefective.

Then p1 ~ ps.

For g € F[xq,xs,...,,| an irreducible polynomial, let F'(q) be the field of fractions of the
quotient ring F[x1, ..., z,|/(q(x1,. .., x,)). We call it the function field of ¢.

A scalar « € F* := F'\ {0} is called a norm of ¢ if ¢ ~ ap.

For a field extension K/F and ¢ an F-quadratic form, let ¢ denote the quadratic form
R K.

For ay,...,a, € F* let (ay,...,a,), be the diagonal bilinear form defined by:

(@1, ), W, 00) > D @y,
=1

Let W (F') (resp. W,(F') ) be the Witt ring of regular symmetric F-bilinear forms (resp. the
Witt group of nonsingular F-quadratic forms). The group W, (F') is endowed with a W (F)-
module structure as follows: To any regular symmetric F'-bilinear form B on a vector space
V' and a nonsingular F'-quadratic form ¢ on a vector space W/, we associate a nonsingular
quadratic form B ® ¢ defined on V @ W by:

B ® ¢(v®@w) = B(v,v)p(w) for any (v,w) € V x W

and whose polar form is B ® B, where B, is the polar form of .

All irreducible polynomials p € Fxq,...,x,] that we will deal with are inseparable, i.e.,
p € F[x?, ... x2] as statement (2) of the following proposition asserts:

Proposition 2.2. Let ¢ be a semisingular quadratic form over F'.
(1) If  is quasi-hyperbolic, then ql(p) is also quasi-hyperbolic.
(2) If ql(y) is anisotropic and p € Fl[xy,...,x,)] is irreducible such that pp) is quasi-
hyperbolic, then:
(2.a) p is inseparable.

(2.6) ia(Prp) = T2 and iy (r)

__ dimy—dim ql(cp)'
(2.c) If p is normed, then p is a norm of ql(p).
3
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(2.d) If L is the subfield of F' generated over F? by the coefficients of p, then any nonzero
scalar of L is a norm of ql(y).

Proof. Let R be a nonsingular quadratic form such that ¢ ~ R 1 ql(¢).

(1) We have i4(¢) = i4(ql()) by the uniqueness of the quasilinear part. Suppose that ¢ is
quasi-hyperbolic. Then i;(¢) = iw () + iq(p) > di%. Hence, di% < dmE 4 () because
iw () < 92 Consequently, dlm—ql(‘p) < i4(p).

(2) Suppose that ql(¢) is anisotropic and ¢, is quasi-hyperbolic. By previous statement,
al(¢) p(p) is quasi-hyperbolic. By [5, Theorem 6.10] and [8, Theorem 1.1], the polynomial p

is inseparable, it is a norm of gl(¢) when p is normed, and iq(ql(¢)r@)) = dimqu(“’). Now, the
condition M2 < iy (pp()) + id(gqp(p)) = iw (Pr@E)) + dlmqu(“D), implies that iy (pr(y))
dnf - Consequently, iy (¢©r()) = %‘mql(‘p). Hence, the statements (2.a), (2.b) and (2.c
Statement (2.d) is proved in [5, Theorem 6.7].

I:I\-/ v

We will now give some results on transfer that will play a crucial role in our proofs.

Let K/F be a finite field extension and s : K — F be a nonzero F-linear map. For a
quadratic form ¢ on a K'-vector space V, we associate s,(q) an F'-quadratic form on V', viewed
as an F'-vector space, defined as follows:

s:(q)(v) = s(q(v)) forallv € V.
Similarly if b is a bilinear form on a K -vector space V, we associate s, (b) an F-bilinear form
on V' defined as follows:
$4(0) (v, w) = s(b(v,w)) for all v, w € V.

Note that dim s,(q) = [K : F]dimgq, and s.(¢1 L ¢2) ~ s.(q1) L s.«(g2) for any two K-
quadratic (or K -bilinear) forms ¢; and ¢». Moreover, if ¢ is a nonsingular (resp. totally singular)
quadratic form, then the form s, (q) is also a nonsingular (resp. totally singular) quadratic form.
We also have s, (b) regular if b is a regular bilinear form.

Another important result that we will use in the proofs is the Frobenius reciprocity which is
given by the following proposition.

Proposition 2.3. ([3, Proposition 20.2] Frobenius Reciprocity) Suppose that K/F' is a finite
extension and s : K — F'is a nonzero F-linear map. Let q (resp. b) be a nonsingular
quadratic form over F (resp. symmetric bilinear form over K ). Then, there exists an isometry

3:(b ® qg) ~ s.(b) ®q.

The Frobenius reciprocity also exists when b is defined over F' and ¢ is defined over K. For
more details we refer to [3, Section 20].

‘We recall a well known result on transfer:

Proposition 2.4. ([3, Lemmas 20.9, 20.12]) Let K = F'(«) be a simple extension of F of degree
m. Let s : K — F be the F-linear map given by s(1) = 1 and s(o') = 0 forall1 < i <m—1.
Then, we have in W (F):

1 if misodd,
s((1)p) = { (1,N§</>1:(a)>b if miseven.

S*(<Oé>b> = { <NK/€(Q)>b i; Zﬁj g\c/ljlit,

where N p is the norm map of the extension K/ F.
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Corollary 2.5. We keep the same notations and hypotheses as in Proposition 2.4. For any
nonsingular F-quadratic form R, we have in W,(F):

s.(R) = R if misodd,
L (L Ngyp(a)y ® ROif mis even.

s*(aR):{ (Ni/r(a))y ® R if mis odd,

o
0 if mis even.

Proof. We combine the Frobenius reciprocity with Proposition 2.4 and the facts that R ~ (1), ®
Rand aR ~ (a), ® R. O

We will also need the following computation for totally singular forms:

Lemma 2.6. Let d € F \ F?, K = F(v/d) and 1 a totally singular F-quadratic form. For the
F-linear map s : F(v/d) — F given by 1 — 1 and \/d — 0, we have:

s;(V)~ (1, d) @ and  s.(Vd) ~2dimp x (0).

Proof. Since K? = F? + dF? C F, it follows that s(Dg(v/di)) = {0}, which means that
s, (Vdip) ~ 2dim ) x (0) and s, (1)) ~ 1) L dip. O

3. PROOF OF THEOREM 1.1 IN THE CASE OF p = 22" 4+ d
The starting point of our investigation on the norm theorem is the following result:

Proposition 3.1. ([9, Proposition 2.7]) Let ¢ be a semisingular F-quadratic form and d &€

F\ F? such that iy (¢ vay) = w. Then, there exists a nonsingular F-quadratic

form R such that o ~ R | ql(¢) and x* + d is a norm of R over F(x).

From this proposition we will derive the following corollary and then prove the same result
for any extension of the form F( V/d).

Corollary 3.2. If ¢ is a semisingular F-quadratic form and d € F\ F? such that iy (¢ F( \/E)) =

w, then x? + d is a norm of p L dql(p) over F(z).

Proof. Suppose that iw (¢p(/z) = w. From Proposition 3.1, we have ¢ ~ R |

al(p), where R is a nonsingular form over F which admits z® + d as a norm. Thus, we have
¢ L dgl(p) ~ R L ql(¢) L dql(p)and R ~ (2*+d)R. Since ql(¢) L dql(e) ~ (1, d)@dl(p)

and 22 + d is a norm of (1, d), it follows that 2 + d is also a norm of ql(y) L dql(y).
Therefore, ¢ L dql(p) ~ (z* + d)(¢ L dql(p)). Since the dimension of left and right
hand sides are the same, it follows from Proposition 2.1(1) that ¢ L dql(p) ~ (2® + d)(p L
O

dql()).
Proposition 3.3. Let ¢ be a semisingular F'-quadratic form and d € F such that ¥ +dis
irreducible over F' and z'W(goF( 2%)) = %ﬂmql(@. Then, 22" + d is a norm of » | dql(y)
over F(x).
Proof. We proceed by induction on n. For n = 1 the proposition is nothing but the previous
corollary.

Suppose n > 2, and the proposition is true for n — 1. Let L = F(v/d) and ¢ ~ R L ql() be
a semisingular F-quadratic form such that iw (¢, ( 2%)) — dime—dimql(p)

2
the field L. Since F'(*/d) = L(*"\//d) and

. We consider ¢ over

iw (R L), 2 ) = =S e)
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it follows from induction hypothesis that we get over L(x)

(3.1) p L Vddl(p) = (z" + Vd)(¢ L Vddl(y)).

Note that L(z) = F(z)(x*" + v/d). Now, to descent the previous isometry to F(z) we will
use Scharlau’s transfer and Frobenius reciprocity for the F'(x)-linear map s : L(z) — F(z)
given by:

11 and 22" +Vd — 0.

Using the isometry of totally singular forms (1,v/d) ~ (1,22" + /d), it follows that
dl(p) L Vdal(p) = al(e) L (@ + Vd)al(p).

Hence, equation (3.1) becomes

(32) RLdl(p) L (@™ +Vd)dlp)~ (@ + VAR Lqllp) L (=" + Vd)dl(p).
Moreover, as Ny, (), p(m)(a?n_l ++/d) = 2% + d, it follows from Corollary 2.5 and Lemma 2.6
s.(R) ~ (1, 22+ d), ® R,

s (2" +Vd),® R) ~ 0,
s«(al(e)) ~ ql(p) L (=¥ + d)ql(e),

s.((z%" +Vd)ql()) ~ 2dim ql(¢) x (0).

Now by applying s, to equation (3.2), we get

RL (¥ +dR L (1,2 +d) @dqle) L 2dimql(e) x (0) ~ (1,22 +d) @ ql(p)
1 2dimql(y) x (0).
Cancelling the form 2 dim ql(¢) x (0) (Proposition 2.1) and adding (z*" + d) R to the equation
yields
R L al(y) L (@™ +d)al(p) ~ (z* + )R L al(y) L (@ +d)al(y).

Since ql(p) L (22" +d)ql(p) ~ ql(¢) L dql(y) (because (1, 2%" +d) ~ (1, d)), and the forms
on both sides have the same dimension, we deduce

@ Ldgl(p) ~ (z*" + d)R L ql(p) L dql(g).

Since 22" + d is a norm of ql(y) L dql(y), we get ¢ L dgl(yp) ~ (¥ + d)(¢ L dqgl(p)), as
desired. U

We obtain the following proposition which is a particular case of the implication (1) = (2)
of Theorem 1.1.

Proposition 3.4. Let p = 2*" + d € F|x] be an irreducible polynomial and p a nondefective
semisingular quadratic form over F which is quasi-hyperbolic over F(p). Then, p is a norm of
@ over F(z).
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Proof. Without loss of generality, we may suppose that ¢ is anisotropic. Suppose that ¢ =

R 1L gl(yp) is quasi-hyperbolic over F'(p). In particular, by Proposition 2.2(1) ql(y) is quasi-

hyperbolic over F'(p). By statement (2.c¢) of Proposition 2.2, ql(y) =~ pql(p) over F(z).
Moreover, by statement (2.d) of Proposition 2.2, we get ql(¢) ~ dql(y). Thus

al(p) L dal(e) ~ al(p) L ql(p) >~ ql(p) L dimgl(p) x (0).

dim p—dim gl(¢p)
2

By statement (2.b) of Proposition 2.2, we get iy (¢ r()) = . Hence, Proposition

3.3 implies that
R L dl(p) L ddl(p) ~p(R L dl(p) L ddl(e)).
Consequently, we have
R 1L ql(p) L dimql(yp) x (0) =~ p(R L dl(¢)) L dimgl(p) x (0).
Cancelling the form dim ql(¢) x (0) yields R L ql(¢) ~ p(R L ql(p)). O

4. PROOF OF THEOREM 1.1 IN ONE VARIABLE

We will now prove Theorem 1.1 in this section in the case where the polynomial p is in one
variable.

Theorem 4.1. Let p be a nondefective semisingular quadratic form of dimension > 3 over F),
and let p € Fx] be a normed irreducible polynomial. If  is quasi-hyperbolic over F(p), then
p is a norm of P (y).

Let ¢ and p be as in Theorem 4.1. Since ¢ is quasi-hyperbolic over F'(p), we get by Propo-
sition 2.2 that p is inseparable and ql(y) is quasi-hyperbolic over F'(p).

Obviously, p = q(z*") for some q(x) € F[z] irreducible and separable and some m > 1. Let
us write F'(p) = F(«), where « is a root of p(x) in an algebraic extension of F'. Let n = degq,
B = a*" and S = F(f) which is a separable extension of F. Clearly, S(x) = F(z)(z*" + )
and q(z*" + y) € F(x)[y] is the minimal polynomial of %" + 3 over F'(z).

Let s : S(x) — F(x) be the F(z)-linear map given by:

1+ land (2% + B)' +— 0
for all 1 <1 < degq — 1. We prove the following result:

Proposition 4.2. We keep the same notations as before. For any nonsingular F'-quadratic form
R, we have in W,(F'(z)):

(R) = R if degqisodd,
S | (Lpy® R if degqiseven.

om | pR if degqisodd,
s((@ +6>R)_{ 0 if degqiseven.

Proof. Since q¢(2*" +vy) € F(x)[y] is the minimal polynomial of 2*" + 3 over S(z), it follows
that Ng(z)/r@)(z*" + ) = q(«*") = p. Then, the proposition follows from Corollary 2.5. [

For the case of totally singular forms we give the following proposition:

Proposition 4.3. We keep the same notations as before. For any totally singular quadratic form
over F' having p as a norm, we have

$e(¥) =~ L (n—1)dime x (0).
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Proof. Put q(z) = ap + ez + -+ + a,_12" ' + 2" Letd € F and
u=e+e(@® +8)+- - +e(@® +8)"7 € S(z) = Fla) (@™ + B),
where ¢; € F'(x). We have
s:((0))(w) = s(3(eg + €1 (2®" + B)? + - + 61 (27" + 5)*"7)).

Since q(2?" + y) € F(x)[y] is the minimal polynomial of 22" + 3 over F'(z), it is clear that
(@™ + P8k e @ L* + p) forany k > 0, where L = F?[ag, -+ ,a,_1,2>" ], and thus

0<i<n—1
s(z?" + B)*) € L for any k > 0. Consequently, s,((0))(u) = d€j + deicy + - -+ + €2 _ ¢
for suitable ¢y, ...,c,—1 € L. So in terms of isometry it means that
S*(<(5>) >~ 5<1, Ciy... ,Cn,1>.
Now write ¢ ~ (dy, ..., d,) and using the fact that transfer is compatible with the orthogonal

sum, we get s, (1) ~ ¢ L 190 L ... L ¢, 1. Now statement (2.d) of Proposition 2.2 implies
that ¢;1) ~ 1) as p and 22" are norms of 1. Hence, we get s.(¢)) ~ ¢ L (n — 1)dim¢x(0). O

Proof of Theorem 4.1. We keep the same notations and hypotheses as before. We may suppose
that  is anisotropic. Note that ql(¢) stays anisotropic over S as the extension S/ F is separable
[8, Lemma 2.8]. Extending ¢ to .S and using the uniqueness of the quasilinear part, there
exists a nonsingular form R, over S such that o5 ~ Ry L ql(p)s L i x [0,0] and Ry L
aql(p)s = (¢s)an- Since p is quasi-hyperbolic over F'(p) = F(«), it follows that (pg)a, is
quasi-hyperbolic over F'(«). Also, F(or) = S(a) and « is purely inseparable over S with
minimal polynomial 22" + (3. Thus, 22" + 3 is a norm of (g)., (We use Proposition 3.4
if (¢5)an is semisingular, and Proposition 2.2(2.c) if (pg)a, is totally singular). Since pg ~
() ans it follows that

4.1) ¢ =~ (27" + B)g over S(x).

In particular, ql(¢)g@) =~ (%" + 8)ql(p)s@). To descent the equation (4.1) over F'(z), we
will use Scharlau’s transfer related to the F'(z)-linear map s : F(z)(2?" + 3) — F(z) given
by:

1~ land (z*" +B)' — 0

forall 1 <7 <n — 1. Werecall the previous calculations (Propositions 4.2 and 4.3):

52 (Rsg) ~ R if nisodd,
*\ LS () (I,p)p @ R if niseven.
- pR if nisodd,
so((2”" + P)Rs() ~ { 0 if niseven.

s« (dl(9)s()) = dl(e) L (n —1)dimql(p) x (0),

Assume that n is odd. Applying the transfer map s, to the equation (4.1), we obtain:
42) RLdl(p) L (n—1)dimgl(e) x (0) ~pR L ql(p) L (n—1)dimgl(e)x (0).
Likewise when n is even, we apply the transfer map s, to the equation (4.1) to get:
43) (Lpp®R Ldl(p) L (n—1)dimqgl(p) x (0) ~dl(p) L (n—1)dimgl(p)x (0).

Note that adding pR to both sides of the equation (4.3) gives us the equation (4.2). Now
cancelling the form (n — 1) dim ql(¢) x (0) in the equation (4.2) (Proposition 2.1(2)), and using
the fact that ql(y) ~ pql(p) because ql(¢) () is quasi-hyperbolic (Proposition 2.2(2.c)), we
get p ~ pp over F'(x). O
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5. PROOF OF PROPOSITION 1.2

For the proof of Proposition 1.2, we need some preparatory results. First, we mention a
lemma to be used in Step 1 below.

Lemma 5.1. ([9, Lemma 2.4]) Let p € Flxy,...,x,| be an irreducible polynomial, and let
¢ ~ R L qgl(y) be an anisotropic quadratic form such that dim R > 0 and Rp(y) is not hyper-
bolic. Then, p stays irreducible over F ().

5.1. Some results on places. Let K and L be fields. We take L™ = L U {oo} with the rules:
r+oo=o0forx € L,

xoo = oo forx € L*,

1 1
— =0, - = 00,0000 = 00,
00 0

and oo + 0o, 0 X oo are not defined.

A place from K to L is a "homomorphism" A : K — L satisfying: Az +y) = A(x) + A(y)
and A(zy) = A(x)A(y), whenever the right hand sides are defined (we admit the trivial places
K < L).

If K and L are extensions of F' and A\(z) = z for all x € F, then we say that ) is an F'-place.
One attaches to A its ring Ry := {x € K | A\(x) # oo}. This is a valuation ring whose field
of fractions is K and maximal ideal is m) = {z € K | A(xz) = 0}. Clearly, the residue field
R, /m, can be identified with a subfield of L. We refer to [10, Appendix, Chapter 3] and [2] for
an overview on places and their connection with valuations.

A result that we will use in the sequel is due to Knebusch.

Lemma 5.2. [6, Lemma 2.8] Let M and N be free quadratic modules over R) such that
M /myM and N/myN are non-degenerate. Assume that NQ K~MQK. Then, N/myN~M /m, M.

Using this result we prove a substitution principle for semisingular quadratic forms:

Proposition 5.3. Let p be a nondefective semisingular form over F, and let p € Flxy, ..., x,]
be anormof . Let cy, ..., ¢, € F be such that the polynomial q := p(cy, ..., Ck, Tki1,s .-, Tn)
is nonzero, 1 < k < n. Then, q is a norm of ¢ over F(xi1,...,T,).

Proof. We give the proof for £k = 1 and the rest follows by an obvious induction. Let ¢ be a
nondefective semisingular form over F' and p € Fl[zy,...,x,] be anorm of ¢. Let ¢; € F be
such that ¢; := p(¢y, @9, . .., x,) is nonzero.

Consider K = F(xy,...,x,) and L = F(xg,...,2,) (tead L = F if n = 1). We fix
the F-place A : K — L™ given by: 1 + ¢y and z; — x; forall 2 < ¢ < n. Let M
and N be free R)-module of rank dim ¢, and equipped with Rj-quadratic forms @) and @’
such that ) ~ ¢ ® Ry and Q' ~ pp ® R,. Since ql(p) is anisotropic over L (because ¢ is
nondefective) and R)/m, is a subfield of L, it follows that Q ® R, /m) and Q' ® R)/m, are
non-degenerate. Moreover Qx ~ pQ because px ~ pypr. Hence, Lemma 5.2 implies that
Q ® Ry/my, ~ Q' ® R)/m,. Extending scalars to L, we get ¢, =~ qpr, as desired. d

5.2. Proof of Proposition 1.2. Let ¢ ~ R | ql(y) be a nondefective semisingular quadratic
form over F'. Let f € F[xy,...,z,]| be anorm of ¢ and p a normed irreducible polynomial that
divides f with an odd power. We want to prove that p is a norm of . Without loss of generality,
we may suppose that ¢ is anisotropic and p? does not divide f, i.e., f = pg where p does not
divide g. We proceed by induction on n.

Step 1. The case n = 1. We will follow some arguments used in the proofs of [9, Lemma

2.3, Theorem 1.1]. Since f is a norm of ¢, we have R L ql(¢) ~ pg(R L ql(y)). By the
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uniqueness of the quasilinear part, we have ql(¢) ~ pg(ql(¢)). By [8, Proposition 1.2], we get
al(y) ~ pal(y), and thus gl(¢) r(p) is quasi-hyperbolic.

Claim 1. ql(¢p(z)) =~ Sr@) L Sk for a suitable subform S of ql(y).

By [7, Lemma 2.1], there exists a subform S of ql(¢) such that (ql(¢) r(p))an = Sk(p). Let us
write S = (cq, ..., cs). It suffices to prove that the elements ¢4, ..., cs, pcy, . . ., pcs are F(a:)2-
linearly independent by [7, Lemma 2.1]. In fact, let ¢, ..., qs, ¢}, ..., ¢, € F(z), not all zero,
be such that

(5.1) iciq? +piciq§2 = 0.
=1 =1

We may suppose that ¢, ..., qs, 4, ..., q, € F[z] and p does not divide all of them. We extend
equation (5.1) to F(p) to get >_°_, ;7 = 0 € F(p). Since Sr(y, is anisotropic, it follows that
q; = r;p for some r; € F[z| (1 <1i < s). We substitute ¢; = r;p in equation (5.1), we simplify
by p and extend to F'(p) to get > >, ciq_l’-2 = 0 € F(p). Again, the anisotropy of Sp(y) implies
that p divides ¢/, . . ., ¢}, a contradiction to the choice of ¢1, ..., ¢s, ¢}, .. ., ¢.. Hence the claim.

Claim 2. iy (op@)) > 1.

Let us assume that iy (¢p(,)) = 0 and let r = dim R. The previous claim gives us the isometry
pgp~ R LS 1 pSover F(z).

Without loss of generality, we assume that 1 € Dp(¢) and thus f € Dp(,)(¢). Hence, there
exists u € F[x]", v,v" € F[z]® and ¢ € F|x] such that

(5.2) pgq® = R(u) + S(v) + pS).

We may suppose that ¢ and the polynomials composing u, v and v’ are coprime. We extend
equation (5.2) to F'(p) to get R(u) + S(v) = 0. Using 4w (¢r(p)) = 0 and anisotropy of .5, it
follows that u = pu; and v = puv; for some u; € F[x]" and v; € F[z]®. Substituting u = pu;
and v = pv; in equation (5.2) and simplifying by p, we get S(v') = gq* + pl for some | € F|x].
In particular, we can say that ql(¢) represents gq* + pl over F[x]. We have ql(¢) =~ pgql(e),
therefore pgql(p) represents gq* + pl over F[z], i.e.,

(5.3) 9¢° + pl = pgS(q1) + p°9S(g2)

for some q;,q2 € F[z]°. We extend equation (5.3) to F'(p) to get g¢*> = 0, i.e., ¢ = pq for
some ¢’ € F[x]. We substitute this in equation (5.2), simplify by p and extend to F(p) to get
S(v") = 0. Since S is anisotropic over F'(p), we get v’ = pv] for some v; € F[z]|®. This is a
contradiction to the hypothesis that ¢ and the polynomials composing u, v and v’ are coprime.
Thus, our assumption that iy (¢r(,)) = 0 is wrong. We now have iy (¢r()) > 1.

Claim 3. w (QOF(p)) = dir;R.

To prove the claim we proceed by induction on dim R. If dim R = 2, then we are done by
Claim 2. Suppose that dim R > 2 and the claim is true for any nondefective semisingular form
¢’ that has f as a norm and whose regular part is of dimension < dim R.

Let L = F(p) and put o, ~ R’ 1 i x H L ql(¢), where ¢ = iy (¢r). We treat two cases:

(a) If Rp(y) is hyperbolic, then iy (¢r()) = ¥2£ and we are done.

(b) If Rp(p) is not hyperbolic. Lemma 5.1 implies that p remains irreducible over L. Since
fr is also a norm of R’ L ql(y)y, it follows by induction hypothesis that iy ((R' L

_ dim R’

al(e)) L)) 5
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Hence, we get iy (¢r ) = 22£. Moreover, the extension F(p)(¢)/F(p) is purely transcen-

dental since zw(wp(p)) > 1 (Claim 2). As L(p) = F(p)(v), we conclude from iy (¢r () =

dlmR that ZW<g0F( )) R
dim

In conclusion of Step 1 we got ql(¢ ) (») quasi-hyperbolic and Zw(QOF(p)) = 4% which

implies that ©r(,) is quasi-hyperbolic. By Theorem 4.1, we conclude that p is a norm of .

Step 2. Suppose n > 2 and the proposition is true for n—1. We will use an induction argument
due to Knebusch [6, Page 296-297]. Setx’ = (z2,...,2,),x = (z1,2")and L = F(zo, ..., z,).
Let r be the degree of p considered as a polynomial in L{z,] and { € Fl[zy,...,x,] be the
highest coefficient of p € L[z4].

(1) Suppose that F' is infinite:

e Ifr = 0, i.e., pisaconstant polynomial in L[z]. We write f = p(2')g(x) € F(x1,...,2,).
Since p? does not divide f, then p does not divide all coefficients of g € L[z1]. Since F is
infinite, there exists ¢ € F such that p(z’) does not divide g(c, 2’) in F'[z']. By Proposition
5.3, p(a")g(c, ') is a norm . By induction hypothesis p(z’) is a norm of ¢, and thus it
is also a norm of k.

e If r > 0. Let p’ = (~'p which is a normed polynomial in L[x;]. We will first verify that
p'? does not divide f. Assume that p’?|f, then p|(g and thus p|¢(%g. This is not possible
since p is an irreducible polynomial which does not divide g. Hence, p t f. We have

¢ = fp =~ pgp =~ ("'p'gp. Using Step 1, we get r(ay) = P'Pr(), i,
PPL(1) = CPL(r)

We claim that ¢ is a norm of ;. Let us take / any normed irreducible divisor of ¢ in
Flzy, ..., x,] with odd power, say ¢ = h(’. Since p is irreducible, the polynomial & does
not divide all coefficients of p € L[z]. Since F' is infinite, there exists ¢ € F such that
h does not divide p(c,z’). By Proposition 5.3, we have the isometry p(c, 2')pr ~ Cpr.
Hence, (p(c, 2’) is a norm of ¢, and by induction hypothesis h is a norm of .

Since ( is normed and any normed irreducible factor of it is a norm of ¢, we deduce that
¢ is anorm of ¢y, and thus p is a norm of Y ;).

(2) Suppose that F' is finite. We change F' by F'(¢) for some variable ¢ over F'. Hence, over
F(t) we are in condition (1), and thus p is a norm of Yp(y)(g,,...z.)- Now applying Proposition
5.3 and substituting t = 0, we get ¢ ~ pp over F'(z1,...,x,). O

6. PROOF OF THEOREM 1.1 IN MANY VARIABLES

Let p € Flxy,29,...,x,] be a normed irreducible polynomial, L = F(z,,...,x,) and let ¢
be the highest coefficient of p considered as a polynomial of L[z{]. Let ¢ be a nondefective
semisingular quadratic form of dimension > 3 over F' which is quasi-hyperbolic over F'(p) =
L(p). By Theorem 4.1 the polynomial {(~'p € L[z] is a norm of ¢,,), or, equivalently (p is
anorm of ¢y ,,). By Proposition 1.2, p is a norm of .

Conversely, if p is a norm of ¢, then ¢, is quasi-hyperbolic by [9, Theorem 1.1]. U

REFERENCES

[1] Baeza R., The norm theorem for quadratic forms over a field of characteristic 2, Comm. Algebra, 18 (1990),
no. 5, 1337-1348.

[2] Bourbaki N., Eléments de mathématiques, Algebre commutative. Chapitres 5-7, Springer-Verlag Berlin-
Heidelberg, 2006.

[3] Elman R., Karpenko N. and Merkurjev A., The algebraic and geometric theory of quadratic forms, American
Mathematical Society Colloquium Publications, vol. 56, American Mathematical Society, Providence, RI,
2008.

11



[4] Hoffmann D.W. and Laghribi A., Quadratic forms and Pfister neighbors in characteristic 2, Trans. Amer.
Math. Soc., 356 (2004), no. 10, 4019-4053.
[5] Hoffmann D.W., Diagonal forms of degree p in characteristic p, Algebraic and arithmetic theory of quadratic
forms, Contemp. Math., vol. 344, Amer. Math. Soc., Providence, RI, 2004, pp. 135-183.
[6] Knebusch M., Specialization of quadratic and symmetric bilinear forms, and a norm theorem, Acta Arith.,
24 (1973), 279-299.
[7]1 Laghribi A., On splitting of totally singular quadratic forms, Rend. Circ. Mat. Palermo (2), 53 (2004), no. 3,
325-356.
[8] Laghribi A., The norm theorem for totally singular quadratic forms, Rocky Mountain J. Math., 36 (2006),
no. 2, 575-592.
[9] Laghribi A. and Mammone P., On the norm theorem for semisingular quadratic forms, Indag. Math. (N.S.),
17 (2006), no. 4, 599-610.
[10] Scharlau W., Quadratic and Hermitian forms, Grundlehren der Mathematischen Wissenschaften, vol. 270,
Springer-Verlag, Berlin, 1985.
[11] Witt E., Verschiedene Bemerkungen zur Theorie der quadratischen Formen iiber einem Korper, Colloque
d’ Algebre supérieure, Bruxelles, 1956, pp. 245-250.

1&2 UNIv. ARTOIS, UR 2462, LABORATOIRE DE MATHEMATIQUES DE LENS (LML), F-62300 LENS,
FRANCE
Email address: *ahmed.laghribi@univ-artois.fr, ?diksha_mukhija@ens.univ-artois.fr



