
THE NORM THEOREM FOR SEMISINGULAR QUADRATIC FORMS

AHMED LAGHRIBI1 AND DIKSHA MUKHIJA2

ABSTRACT. Let F be a field of characteristic 2. The aim of this paper is to give a complete proof
of the norm theorem for singular F -quadratic forms which are not totally singular, i.e., we give
necessary and sufficient conditions for which a normed irreducible polynomial of F [x1, . . . , xn]
becomes a norm of such a quadratic form over the rational function field F (x1, . . . , xn). This
completes partial results proved on this question in [9]. Combining the present work with the
papers [1] and [8], we obtain the norm theorem for any type of quadratic forms in characteristic
2.

1. INTRODUCTION

Let F be an arbitrary field. Given a field extension K/F , a natural problem in the algebraic
theory of quadratic forms consists of studying the behavior of F -quadratic forms after scalar ex-
tension to K. This problem first started by a result of Witt [11] characterizing irreducible poly-
nomials p in one variable for which a given anisotropic F -quadratic form becomes isotropic over
F (p) (the function field of the affine hypersurface given by p = 0). Few years later, Knebusch
studied the problem of metabolicity of F -bilinear forms over F (p), where p ∈ F [x1, . . . , xn]
is normed irreducible (normed means that the coefficient of the highest monomial occurring
in p with respect to the lexicographical ordering is 1). To this end, he introduced in [6], his
specialization theory for quadratic and bilinear forms. As a consequence, he proved an impor-
tant result known as the norm theorem [6, Theorem 4.2]. The result states that, for a normed
irreducible polynomial p ∈ F [x1, x2, . . . , xn], an anisotropic bilinear form b over F becomes
metabolic over F (p) if and only if p is a norm of b over F (x1, . . . , xn), i.e., b is isometric to pb
over F (x1, . . . , xn).

Obviously, Knebusch’s norm theorem cited before extends to quadratic forms in character-
istic different from 2. Concerning quadratic forms in characteristic 2, we distinguish between
three types: nonsingular forms, semisingular forms and totally singular forms (see Section 2).
Baeza extended the norm theorem to nonsingular forms [1]. His proof uses Knebusch’s norm
theorem for quadratic form in characteristic not 2 via a lifting argument from characteristic 2
to 0, which is based on the idea that any field of characteristic 2 can be viewed as the residue
field of a complete discrete valued ring of characteristic 0. For the case of singular quadratic
forms (i.e., semisingular or totally singular quadratic forms) in characteristic 2 the situation is
more subtle. The main ingredient used in this case is the notion of quasi-hyperbolicity which
is an extension of the notion of hyperbolicity. Recall that a singular form ϕ is quasi-hyperbolic
if dimϕ is even and it(ϕ) ≥ dimϕ/2, where it(ϕ) is the total index of ϕ (see Section 2).
Note that a restrictive notion of quasi-hyperbolicity (i.e., it(ϕ) = dimϕ/2) was first used by
Laghribi, but it turns out that these two notions coincide over the field F (p) for which we are in-
terested here (see Proposition 2.2(2.b)). Based on the notion of quasi-hyperbolicity, Laghribi [8]
and independently Hoffmann [5] proved the norm theorem for totally singular quadratic forms.
Later, Laghbribi and Mammone gave partial results on norm theorem for semisingular quadratic
forms [9]. More precisely, one of the result given by them asserts that whenever an anisotropic
semisingular quadratic form ϕ has a normed irreducible polynomial p ∈ F [x1, . . . , xn] as a
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norm, then it is quasi-hyperbolic over F (p). The reverse implication has also been proved
in their paper for the special case when the polynomial p is given by a quadratic form which
represents 1.

From now on we consider F to be a field of characteristic 2. The aim of this paper is the
following result which completes the proof of the norm theorem for semisingular quadratic
forms.

Theorem 1.1. Let ϕ be a nondefective semisingular quadratic form of dimension ≥ 3 over F ,
and let p ∈ F [x1, x2, . . . , xn] be a normed irreducible polynomial and K = F (x1, x2, . . . , xn).
Then, the following two conditions are equivalent:
(1) ϕ is quasi-hyperbolic over F (p).
(2) p is a norm of ϕK .

As we said before implication (2) ⇒ (1) has already been proved in [9]. So we will focus
on the proof of the implication (1) ⇒ (2) which will be done in two steps. First, we give the
proof in the case of a normed irreducible polynomial in one variable. In this step we first prove
the theorem for the polynomial x2n + d, and then generalize it to any one variable normed ir-
reducible polynomial using Scharlau’s transfer. In the second step, we will prove the theorem
for a polynomial in more than one variable for which we will use an induction on the num-
ber of variables due to Knebusch. To proceed with the induction we will need the following
proposition.

Proposition 1.2. Let ϕ be a nondefective semisingular quadratic form of dimension ≥ 3 over
F , f ∈ F [x1, . . . , xn] andK = F (x1, . . . , xn). Let p be a normed irreducible polynomial which
divides f with an odd power. If f is a norm of ϕK , then p is also a norm of ϕK .

For a general polynomial (not necessarily irreducible), we will use Theorem 1.1 to get the
following norm criteria.

Corollary 1.3. Let ϕ be a nondefective semisingular quadratic form and q ∈ F [x1, . . . , xn]
such that q = cpε11 . . . p

εr
r with c ∈ F ∗ := F \ {0}, εi ∈ N0 and pi ∈ F [x1, . . . , xn] normed

irreducible polynomial for any 1 ≤ i ≤ r. Then, the following two conditions are equivalent:
(1) q is a norm of ϕ.
(2) c is a norm of ϕ and ϕF (pi) is quasi-hyperbolic when εi is odd.

2. BACKGROUND

Recall that any quadratic form ϕ over F can be written up to isometry as follows:

(2.1) ϕ ' [a1, b1] ⊥ [a2, b2] ⊥ . . . ⊥ [ar, br] ⊥ 〈c1〉 ⊥ . . . ⊥ 〈cs〉,

where ' and ⊥ denotes the isometry and orthogonal sum of quadratic forms, and [a, b] (resp.
〈a〉) denotes the quadratic form ax2 + xy + by2 (resp. ax2). Obviously, dimϕ = 2r + s (the
dimension of ϕ). The quadratic form 〈c1〉 ⊥ . . . ⊥ 〈cs〉 is unique up to isometry, we call it the
quasilinear part of ϕ, and denote it by ql(ϕ). As in equation (2.1), the form ϕ is called:

• nonsingular (resp. singular) if s = 0 (resp. s > 0),
• totally singular if r = 0,
• semisingular if r > 0 and s > 0.

For a1, . . . , an ∈ F , let 〈a1, . . . , an〉 denote the totally singular quadratic form 〈a1〉 ⊥ . . . ⊥
〈an〉.

A quadratic form ϕ of underlying F -vector space V is called isotropic if there exists v ∈
V \ {0} such that ϕ(v) = 0, otherwise ϕ is called anisotropic.
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For an integer n ≥ 0 and ϕ a quadratic form, we denote n × ϕ for the quadratic form
ϕ ⊥ . . . ⊥ ϕ︸ ︷︷ ︸

n times

.

Recall that any quadratic form ϕ over F uniquely decomposes as follows:

ϕ ' ϕan ⊥ i× [0, 0] ⊥ j × 〈0〉,
where ϕan is an anisotropic quadratic form. We call ϕan the anisotropic part of ϕ, and the
integer i (resp. j) is called the Witt index (resp. the defect index) of ϕ. The integer i + j is
called the total index of ϕ. We denote i, j and i + j by iW (ϕ), id(ϕ) and it(ϕ), respectively.
The form ϕ is called nondefective if id(ϕ) = 0.

Two quadratic forms ϕ1 and ϕ2 are called Witt-equivalent, denoted ϕ1 ∼ ϕ2, if there exists
m,n ∈ N such that ϕ1 ⊥ m× [0, 0] ' ϕ2 ⊥ n× [0, 0].

A quadratic form (ϕ, V ) represents α ∈ F if there exists v ∈ V such that ϕ(v) = α. We
denote by DF (ϕ) the set of values in F ∗ represented by ϕ.

We will need the following cancellation result:

Proposition 2.1. ([6, Proposition 1.2] for (1), [4, Lemma 2.6] for (2)) Let ϕ1, ϕ2 be two qua-
dratic forms (possibly singular). Suppose that one of the following conditions holds:
(1) ϕ1 ⊥ ψ ' ϕ2 ⊥ ψ for some nonsingular form ψ,
(2) ϕ1 ⊥ s× 〈0〉 ' ϕ2 ⊥ s× 〈0〉 for some integer s ≥ 0 and ϕ1, ϕ2 nondefective.
Then ϕ1 ' ϕ2.

For q ∈ F [x1, x2, . . . , xn] an irreducible polynomial, let F (q) be the field of fractions of the
quotient ring F [x1, . . . , xn]/(q(x1, . . . , xn)). We call it the function field of q.

A scalar α ∈ F ∗ := F \ {0} is called a norm of ϕ if ϕ ' αϕ.
For a field extension K/F and ϕ an F -quadratic form, let ϕK denote the quadratic form

ϕ⊗K.

For a1, . . . , an ∈ F ∗, let 〈a1, . . . , an〉b be the diagonal bilinear form defined by:

((x1, . . . , xn), (y1, . . . , yn)) 7→
n∑
i=1

aixiyi.

Let W (F ) (resp. Wq(F ) ) be the Witt ring of regular symmetric F -bilinear forms (resp. the
Witt group of nonsingular F -quadratic forms). The group Wq(F ) is endowed with a W (F )-
module structure as follows: To any regular symmetric F -bilinear form B on a vector space
V and a nonsingular F -quadratic form ϕ on a vector space W , we associate a nonsingular
quadratic form B ⊗ ϕ defined on V ⊗F W by:

B ⊗ ϕ(v ⊗ w) = B(v, v)ϕ(w) for any (v, w) ∈ V ×W
and whose polar form is B ⊗Bϕ, where Bϕ is the polar form of ϕ.

All irreducible polynomials p ∈ F [x1, . . . , xn] that we will deal with are inseparable, i.e.,
p ∈ F [x21, . . . , x

2
n] as statement (2) of the following proposition asserts:

Proposition 2.2. Let ϕ be a semisingular quadratic form over F .
(1) If ϕ is quasi-hyperbolic, then ql(ϕ) is also quasi-hyperbolic.
(2) If ql(ϕ) is anisotropic and p ∈ F [x1, . . . , xn] is irreducible such that ϕF (p) is quasi-
hyperbolic, then:

(2.a) p is inseparable.
(2.b) id(ϕF (p)) = dimql(ϕ)

2
and iW (ϕF (p)) = dimϕ−dimql(ϕ)

2
.

(2.c) If p is normed, then p is a norm of ql(ϕ).
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(2.d) If L is the subfield of F generated over F 2 by the coefficients of p, then any nonzero
scalar of L is a norm of ql(ϕ).

Proof. Let R be a nonsingular quadratic form such that ϕ ' R ⊥ ql(ϕ).
(1) We have id(ϕ) = id(ql(ϕ)) by the uniqueness of the quasilinear part. Suppose that ϕ is
quasi-hyperbolic. Then it(ϕ) = iW (ϕ) + id(ϕ) ≥ dimϕ

2
. Hence, dimϕ

2
≤ dimR

2
+ id(ϕ) because

iW (ϕ) ≤ dimR
2

. Consequently, dimql(ϕ)
2
≤ id(ϕ).

(2) Suppose that ql(ϕ) is anisotropic and ϕF (p) is quasi-hyperbolic. By previous statement,
ql(ϕ)F (p) is quasi-hyperbolic. By [5, Theorem 6.10] and [8, Theorem 1.1], the polynomial p
is inseparable, it is a norm of ql(ϕ) when p is normed, and id(ql(ϕ)F (p)) = dimql(ϕ)

2
. Now, the

condition dimϕ
2
≤ iW (ϕF (p)) + id(ϕF (p)) = iW (ϕF (p)) + dimql(ϕ)

2
, implies that iW (ϕF (p)) ≥

dimR
2

. Consequently, iW (ϕF (p)) = dimϕ−dimql(ϕ)
2

. Hence, the statements (2.a), (2.b) and (2.c).
Statement (2.d) is proved in [5, Theorem 6.7]. �

We will now give some results on transfer that will play a crucial role in our proofs.
Let K/F be a finite field extension and s : K → F be a nonzero F -linear map. For a

quadratic form q on a K-vector space V , we associate s∗(q) an F -quadratic form on V , viewed
as an F -vector space, defined as follows:

s∗(q)(v) = s(q(v)) for all v ∈ V.
Similarly if b is a bilinear form on a K-vector space V , we associate s∗(b) an F -bilinear form
on V defined as follows:

s∗(b)(v, w) = s(b(v, w)) for all v, w ∈ V.
Note that dim s∗(q) = [K : F ] dim q, and s∗(q1 ⊥ q2) ' s∗(q1) ⊥ s∗(q2) for any two K-
quadratic (orK-bilinear) forms q1 and q2. Moreover, if q is a nonsingular (resp. totally singular)
quadratic form, then the form s∗(q) is also a nonsingular (resp. totally singular) quadratic form.
We also have s∗(b) regular if b is a regular bilinear form.

Another important result that we will use in the proofs is the Frobenius reciprocity which is
given by the following proposition.

Proposition 2.3. ([3, Proposition 20.2] Frobenius Reciprocity) Suppose that K/F is a finite
extension and s : K → F is a nonzero F -linear map. Let q (resp. b) be a nonsingular
quadratic form over F (resp. symmetric bilinear form over K). Then, there exists an isometry

s∗(b⊗ qK) ' s∗(b)⊗ q.

The Frobenius reciprocity also exists when b is defined over F and q is defined over K. For
more details we refer to [3, Section 20].

We recall a well known result on transfer:

Proposition 2.4. ([3, Lemmas 20.9, 20.12]) LetK = F (α) be a simple extension of F of degree
m. Let s : K → F be the F -linear map given by s(1) = 1 and s(αi) = 0 for all 1 ≤ i ≤ m−1.
Then, we have in W (F ):

s∗(〈1〉b) =

{
〈1〉b if m is odd,

〈1, NK/F (α)〉b if m is even.

s∗(〈α〉b) =

{
〈NK/F (α)〉b if m is odd,

0 if m is even,
where NK/F is the norm map of the extension K/F .
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Corollary 2.5. We keep the same notations and hypotheses as in Proposition 2.4. For any
nonsingular F -quadratic form R, we have in Wq(F ):

s∗(R) =

{
R if m is odd,

〈1, NK/F (α)〉b ⊗R if m is even.

s∗(αR) =

{
〈NK/F (α)〉b ⊗R if m is odd,

0 if m is even.

Proof. We combine the Frobenius reciprocity with Proposition 2.4 and the facts thatR ' 〈1〉b⊗
R and αR ' 〈α〉b ⊗R. �

We will also need the following computation for totally singular forms:

Lemma 2.6. Let d ∈ F \ F 2, K = F (
√
d) and ψ a totally singular F -quadratic form. For the

F -linear map s : F (
√
d)→ F given by 1 7→ 1 and

√
d 7→ 0, we have:

s∗(ψ) ' 〈1, d〉 ⊗ ψ and s∗(
√
dψ) ' 2 dimψ × 〈0〉.

Proof. Since K2 = F 2 + dF 2 ⊂ F , it follows that s(DK(
√
dψ)) = {0}, which means that

s∗(
√
dψ) ' 2 dimψ × 〈0〉 and s∗(ψ) ' ψ ⊥ dψ. �

3. PROOF OF THEOREM 1.1 IN THE CASE OF p = x2
n

+ d

The starting point of our investigation on the norm theorem is the following result:

Proposition 3.1. ([9, Proposition 2.7]) Let ϕ be a semisingular F -quadratic form and d ∈
F \ F 2 such that iW (ϕF (

√
d)) = dimϕ−dimql(ϕ)

2
. Then, there exists a nonsingular F -quadratic

form R such that ϕ ∼ R ⊥ ql(ϕ) and x2 + d is a norm of R over F (x).

From this proposition we will derive the following corollary and then prove the same result
for any extension of the form F ( 2n

√
d).

Corollary 3.2. If ϕ is a semisingular F -quadratic form and d ∈ F \F 2 such that iW (ϕF (
√
d)) =

dimϕ−dimql(ϕ)
2

, then x2 + d is a norm of ϕ ⊥ dql(ϕ) over F (x).

Proof. Suppose that iW (ϕF (
√
d)) = dimϕ−dimql(ϕ)

2
. From Proposition 3.1, we have ϕ ∼ R ⊥

ql(ϕ), where R is a nonsingular form over F which admits x2 + d as a norm. Thus, we have
ϕ ⊥ dql(ϕ) ∼ R ⊥ ql(ϕ) ⊥ dql(ϕ) andR ' (x2+d)R. Since ql(ϕ) ⊥ dql(ϕ) ' 〈1, d〉⊗ql(ϕ)
and x2 + d is a norm of 〈1, d〉, it follows that x2 + d is also a norm of ql(ϕ) ⊥ dql(ϕ).

Therefore, ϕ ⊥ dql(ϕ) ∼ (x2 + d)(ϕ ⊥ dql(ϕ)). Since the dimension of left and right
hand sides are the same, it follows from Proposition 2.1(1) that ϕ ⊥ dql(ϕ) ' (x2 + d)(ϕ ⊥
dql(ϕ)). �

Proposition 3.3. Let ϕ be a semisingular F -quadratic form and d ∈ F such that x2
n

+ d is
irreducible over F and iW (ϕ

F (
2n√

d)
) = dimϕ−dimql(ϕ)

2
. Then, x2

n
+ d is a norm of ϕ ⊥ dql(ϕ)

over F (x).

Proof. We proceed by induction on n. For n = 1 the proposition is nothing but the previous
corollary.

Suppose n ≥ 2, and the proposition is true for n−1. Let L = F (
√
d) and ϕ ' R ⊥ ql(ϕ) be

a semisingular F -quadratic form such that iW (ϕ
F (

2n√
d)

) = dimϕ−dimql(ϕ)
2

. We consider ϕ over

the field L. Since F ( 2n
√
d) = L

( 2n−1√√
d
)

and

iW

(
(R ⊥ ql(ϕ))

L
(

2n−1√√
d
)) =

dimϕ− dim ql(ϕ)

2
,

5



it follows from induction hypothesis that we get over L(x)

(3.1) ϕ ⊥
√
dql(ϕ) ' (x2

n−1

+
√
d)(ϕ ⊥

√
dql(ϕ)).

Note that L(x) = F (x)(x2
n−1

+
√
d). Now, to descent the previous isometry to F (x) we will

use Scharlau’s transfer and Frobenius reciprocity for the F (x)-linear map s : L(x) → F (x)
given by:

1 7→ 1 and x2
n−1

+
√
d 7→ 0.

Using the isometry of totally singular forms 〈1,
√
d〉 ' 〈1, x2n−1

+
√
d〉, it follows that

ql(ϕ) ⊥
√
dql(ϕ) ' ql(ϕ) ⊥ (x2

n−1

+
√
d)ql(ϕ).

Hence, equation (3.1) becomes

(3.2) R ⊥ ql(ϕ) ⊥ (x2
n−1

+
√
d)ql(ϕ) ' (x2

n−1

+
√
d)R ⊥ ql(ϕ) ⊥ (x2

n−1

+
√
d)ql(ϕ).

Moreover, as NL(x)/F (x)(x
2n−1

+
√
d) = x2

n
+ d, it follows from Corollary 2.5 and Lemma 2.6

s∗(R) ∼ 〈1, x2n + d〉b ⊗R,

s∗(〈x2
n−1

+
√
d〉b ⊗R) ∼ 0,

s∗(ql(ϕ)) ' ql(ϕ) ⊥ (x2
n

+ d)ql(ϕ),

s∗((x
2n−1

+
√
d)ql(ϕ)) ' 2 dim ql(ϕ)× 〈0〉.

Now by applying s∗ to equation (3.2), we get

R ⊥ (x2
n

+ d)R ⊥ 〈1, x2n + d〉 ⊗ ql(ϕ) ⊥ 2 dim ql(ϕ)× 〈0〉 ∼ 〈1, x2n + d〉 ⊗ ql(ϕ)

⊥ 2 dim ql(ϕ)× 〈0〉.

Cancelling the form 2 dim ql(ϕ)× 〈0〉 (Proposition 2.1) and adding (x2
n

+ d)R to the equation
yields

R ⊥ ql(ϕ) ⊥ (x2
n

+ d)ql(ϕ) ∼ (x2
n

+ d)R ⊥ ql(ϕ) ⊥ (x2
n

+ d)ql(ϕ).

Since ql(ϕ) ⊥ (x2
n

+ d)ql(ϕ) ' ql(ϕ) ⊥ dql(ϕ) (because 〈1, x2n + d〉 ' 〈1, d〉), and the forms
on both sides have the same dimension, we deduce

ϕ ⊥ dql(ϕ) ' (x2
n

+ d)R ⊥ ql(ϕ) ⊥ dql(ϕ).

Since x2n + d is a norm of ql(ϕ) ⊥ dql(ϕ), we get ϕ ⊥ dql(ϕ) ' (x2
n

+ d)(ϕ ⊥ dql(ϕ)), as
desired. �

We obtain the following proposition which is a particular case of the implication (1) =⇒ (2)
of Theorem 1.1.

Proposition 3.4. Let p = x2
n

+ d ∈ F [x] be an irreducible polynomial and ϕ a nondefective
semisingular quadratic form over F which is quasi-hyperbolic over F (p). Then, p is a norm of
ϕ over F (x).
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Proof. Without loss of generality, we may suppose that ϕ is anisotropic. Suppose that ϕ =
R ⊥ ql(ϕ) is quasi-hyperbolic over F (p). In particular, by Proposition 2.2(1) ql(ϕ) is quasi-
hyperbolic over F (p). By statement (2.c) of Proposition 2.2, ql(ϕ) ' pql(ϕ) over F (x).

Moreover, by statement (2.d) of Proposition 2.2, we get ql(ϕ) ' dql(ϕ). Thus

ql(ϕ) ⊥ dql(ϕ) ' ql(ϕ) ⊥ ql(ϕ) ' ql(ϕ) ⊥ dim ql(ϕ)× 〈0〉.

By statement (2.b) of Proposition 2.2, we get iW (ϕF (p)) = dimϕ−dimql(ϕ)
2

. Hence, Proposition
3.3 implies that

R ⊥ ql(ϕ) ⊥ dql(ϕ) ' p(R ⊥ ql(ϕ) ⊥ dql(ϕ)).

Consequently, we have

R ⊥ ql(ϕ) ⊥ dim ql(ϕ)× 〈0〉 ' p(R ⊥ ql(ϕ)) ⊥ dim ql(ϕ)× 〈0〉.

Cancelling the form dim ql(ϕ)× 〈0〉 yields R ⊥ ql(ϕ) ' p(R ⊥ ql(ϕ)). �

4. PROOF OF THEOREM 1.1 IN ONE VARIABLE

We will now prove Theorem 1.1 in this section in the case where the polynomial p is in one
variable.

Theorem 4.1. Let ϕ be a nondefective semisingular quadratic form of dimension ≥ 3 over F ,
and let p ∈ F [x] be a normed irreducible polynomial. If ϕ is quasi-hyperbolic over F (p), then
p is a norm of ϕF (x).

Let ϕ and p be as in Theorem 4.1. Since ϕ is quasi-hyperbolic over F (p), we get by Propo-
sition 2.2 that p is inseparable and ql(ϕ) is quasi-hyperbolic over F (p).

Obviously, p = q(x2
m

) for some q(x) ∈ F [x] irreducible and separable and somem ≥ 1. Let
us write F (p) = F (α), where α is a root of p(x) in an algebraic extension of F . Let n = deg q,
β = α2m and S = F (β) which is a separable extension of F . Clearly, S(x) = F (x)(x2

m
+ β)

and q(x2m + y) ∈ F (x)[y] is the minimal polynomial of x2m + β over F (x).
Let s : S(x)→ F (x) be the F (x)-linear map given by:

1 7→ 1 and (x2
m

+ β)i 7→ 0

for all 1 ≤ i ≤ deg q − 1. We prove the following result:

Proposition 4.2. We keep the same notations as before. For any nonsingular F -quadratic form
R, we have in Wq(F (x)):

s∗(R) =

{
R if deg q is odd,

〈1, p〉b ⊗R if deg q is even.

s∗((x
2m + β)R) =

{
pR if deg q is odd,
0 if deg q is even.

Proof. Since q(x2m + y) ∈ F (x)[y] is the minimal polynomial of x2m + β over S(x), it follows
that NS(x)/F (x)(x

2m + β) = q(x2
m

) = p. Then, the proposition follows from Corollary 2.5. �

For the case of totally singular forms we give the following proposition:

Proposition 4.3. We keep the same notations as before. For any totally singular quadratic form
over F having p as a norm, we have

s∗(ψ) ' ψ ⊥ (n− 1) dimψ × 〈0〉.
7



Proof. Put q(x) = a0 + a1x+ · · ·+ an−1x
n−1 + xn. Let δ ∈ F and

u = ε0 + ε1(x
2m + β) + · · ·+ εn−1(x

2m + β)n−1 ∈ S(x) = F (x)(x2
m

+ β),

where εi ∈ F (x). We have

s∗(〈δ〉)(u) = s
(
δ(ε20 + ε21(x

2m + β)2 + · · ·+ ε2n−1(x
2m + β)2(n−1))

)
.

Since q(x2m + y) ∈ F (x)[y] is the minimal polynomial of x2m + β over F (x), it is clear that
(x2

m
+ β)k ∈

⊕
0≤i≤n−1

L(x2
m

+ β)i for any k ≥ 0, where L = F 2[a0, · · · , an−1, x2
m

], and thus

s
(
x2

m
+ β)k

)
∈ L for any k ≥ 0. Consequently, s∗(〈δ〉)(u) = δε20 + δε21c1 + · · · + δε2n−1cn−1

for suitable c1, . . . , cn−1 ∈ L. So in terms of isometry it means that

s∗(〈δ〉) ' δ〈1, c1, . . . , cn−1〉.
Now write ψ ' 〈δ1, . . . , δr〉 and using the fact that transfer is compatible with the orthogonal

sum, we get s∗(ψ) ' ψ ⊥ c1ψ ⊥ . . . ⊥ cn−1ψ. Now statement (2.d) of Proposition 2.2 implies
that ciψ ' ψ as p and x2m are norms of ψ. Hence, we get s∗(ψ) ' ψ ⊥ (n− 1) dimψ×〈0〉. �

Proof of Theorem 4.1. We keep the same notations and hypotheses as before. We may suppose
that ϕ is anisotropic. Note that ql(ϕ) stays anisotropic over S as the extension S/F is separable
[8, Lemma 2.8]. Extending ϕ to S and using the uniqueness of the quasilinear part, there
exists a nonsingular form R0 over S such that ϕS ' R0 ⊥ ql(ϕ)S ⊥ i × [0, 0] and R0 ⊥
ql(ϕ)S = (ϕS)an. Since ϕ is quasi-hyperbolic over F (p) = F (α), it follows that (ϕS)an is
quasi-hyperbolic over F (α). Also, F (α) = S(α) and α is purely inseparable over S with
minimal polynomial x2m + β. Thus, x2m + β is a norm of (ϕS)an (we use Proposition 3.4
if (ϕS)an is semisingular, and Proposition 2.2(2.c) if (ϕS)an is totally singular). Since ϕS ∼
(ϕS)an, it follows that

(4.1) ϕ ' (x2
m

+ β)ϕ over S(x).

In particular, ql(ϕ)S(x) ' (x2
m

+ β)ql(ϕ)S(x). To descent the equation (4.1) over F (x), we
will use Scharlau’s transfer related to the F (x)-linear map s : F (x)(x2

m
+ β) → F (x) given

by:
1 7→ 1 and (x2

m

+ β)i 7→ 0

for all 1 ≤ i ≤ n− 1. We recall the previous calculations (Propositions 4.2 and 4.3):

s∗(RS(x)) ∼
{

R if n is odd,
〈1, p〉b ⊗R if n is even.

s∗((x
2m + β)RS(x)) ∼

{
pR if n is odd,
0 if n is even.

s∗(ql(ϕ)S(x)) ' ql(ϕ) ⊥ (n− 1) dim ql(ϕ)× 〈0〉,

Assume that n is odd. Applying the transfer map s∗ to the equation (4.1), we obtain:

(4.2) R ⊥ ql(ϕ) ⊥ (n− 1) dim ql(ϕ)× 〈0〉 ∼ pR ⊥ ql(ϕ) ⊥ (n− 1) dim ql(ϕ)×〈0〉.
Likewise when n is even, we apply the transfer map s∗ to the equation (4.1) to get:

(4.3) 〈1, p〉b ⊗R ⊥ ql(ϕ) ⊥ (n− 1) dim ql(ϕ)× 〈0〉 ∼ ql(ϕ) ⊥ (n− 1) dim ql(ϕ)×〈0〉.
Note that adding pR to both sides of the equation (4.3) gives us the equation (4.2). Now

cancelling the form (n−1) dim ql(ϕ)×〈0〉 in the equation (4.2) (Proposition 2.1(2)), and using
the fact that ql(ϕ) ' pql(ϕ) because ql(ϕ)F (p) is quasi-hyperbolic (Proposition 2.2(2.c)), we
get ϕ ' pϕ over F (x). �
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5. PROOF OF PROPOSITION 1.2

For the proof of Proposition 1.2, we need some preparatory results. First, we mention a
lemma to be used in Step 1 below.

Lemma 5.1. ([9, Lemma 2.4]) Let p ∈ F [x1, . . . , xn] be an irreducible polynomial, and let
ϕ ' R ⊥ ql(ϕ) be an anisotropic quadratic form such that dimR > 0 and RF (p) is not hyper-
bolic. Then, p stays irreducible over F (ϕ).

5.1. Some results on places. Let K and L be fields. We take L∞ = L ∪ {∞} with the rules:

x+∞ =∞ for x ∈ L,
x∞ =∞ for x ∈ L∗,
1

∞
= 0,

1

0
=∞,∞∞ =∞,

and∞+∞, 0×∞ are not defined.
A place from K to L is a "homomorphism" λ : K → L∞ satisfying: λ(x+y) = λ(x) +λ(y)

and λ(xy) = λ(x)λ(y), whenever the right hand sides are defined (we admit the trivial places
K ↪→ L).

If K and L are extensions of F and λ(x) = x for all x ∈ F , then we say that λ is an F -place.
One attaches to λ its ring Rλ := {x ∈ K | λ(x) 6= ∞}. This is a valuation ring whose field
of fractions is K and maximal ideal is mλ = {x ∈ K | λ(x) = 0}. Clearly, the residue field
Rλ/mλ can be identified with a subfield of L. We refer to [10, Appendix, Chapter 3] and [2] for
an overview on places and their connection with valuations.

A result that we will use in the sequel is due to Knebusch.

Lemma 5.2. [6, Lemma 2.8] Let M and N be free quadratic modules over Rλ such that
M/mλM andN/mλN are non-degenerate. Assume thatN⊗K'M⊗K. Then,N/mλN'M/mλM .

Using this result we prove a substitution principle for semisingular quadratic forms:

Proposition 5.3. Let ϕ be a nondefective semisingular form over F , and let p ∈ F [x1, . . . , xn]
be a norm of ϕ. Let c1, . . . , ck ∈ F be such that the polynomial q := p(c1, . . . , ck, xk+1, . . . , xn)
is nonzero, 1 ≤ k ≤ n. Then, q is a norm of ϕ over F (xk+1, . . . , xn).

Proof. We give the proof for k = 1 and the rest follows by an obvious induction. Let ϕ be a
nondefective semisingular form over F and p ∈ F [x1, . . . , xn] be a norm of ϕ. Let c1 ∈ F be
such that q1 := p(c1, x2, . . . , xn) is nonzero.

Consider K = F (x1, . . . , xn) and L = F (x2, . . . , xn) (read L = F if n = 1). We fix
the F -place λ : K → L∞ given by: x1 7→ c1 and xi 7→ xi for all 2 ≤ i ≤ n. Let M
and N be free Rλ-module of rank dimϕ, and equipped with Rλ-quadratic forms Q and Q′

such that Q ' ϕ ⊗ Rλ and Q′ ' pϕ ⊗ Rλ. Since ql(ϕ) is anisotropic over L (because ϕ is
nondefective) and Rλ/mλ is a subfield of L, it follows that Q ⊗ Rλ/mλ and Q′ ⊗ Rλ/mλ are
non-degenerate. Moreover QK ' pQ′K because ϕK ' pϕK . Hence, Lemma 5.2 implies that
Q⊗Rλ/mλ ' Q′ ⊗Rλ/mλ. Extending scalars to L, we get ϕL ' qϕL, as desired. �

5.2. Proof of Proposition 1.2. Let ϕ ' R ⊥ ql(ϕ) be a nondefective semisingular quadratic
form over F . Let f ∈ F [x1, . . . , xn] be a norm of ϕ and p a normed irreducible polynomial that
divides f with an odd power. We want to prove that p is a norm of ϕ. Without loss of generality,
we may suppose that ϕ is anisotropic and p2 does not divide f , i.e., f = pg where p does not
divide g. We proceed by induction on n.

Step 1. The case n = 1. We will follow some arguments used in the proofs of [9, Lemma
2.3, Theorem 1.1]. Since f is a norm of ϕ, we have R ⊥ ql(ϕ) ' pg(R ⊥ ql(ϕ)). By the
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uniqueness of the quasilinear part, we have ql(ϕ) ' pg(ql(ϕ)). By [8, Proposition 1.2], we get
ql(ϕ) ' pql(ϕ), and thus ql(ϕ)F (p) is quasi-hyperbolic.

Claim 1. ql(ϕF (x)) ' SF (x) ⊥ pSF (x) for a suitable subform S of ql(ϕ).

By [7, Lemma 2.1], there exists a subform S of ql(ϕ) such that (ql(ϕ)F (p))an ' SF (p). Let us
write S = 〈c1, . . . , cs〉. It suffices to prove that the elements c1, . . . , cs, pc1, . . . , pcs are F (x)2-
linearly independent by [7, Lemma 2.1]. In fact, let q1, . . . , qs, q′1, . . . , q

′
s ∈ F (x), not all zero,

be such that

(5.1)
s∑
i=1

ciq
2
i + p

s∑
i=1

ciq
′
i
2

= 0.

We may suppose that q1, . . . , qs, q′1, . . . , q
′
s ∈ F [x] and p does not divide all of them. We extend

equation (5.1) to F (p) to get
∑s

i=1 ciq̄
2
i = 0 ∈ F (p). Since SF (p) is anisotropic, it follows that

qi = rip for some ri ∈ F [x] (1 ≤ i ≤ s). We substitute qi = rip in equation (5.1), we simplify
by p and extend to F (p) to get

∑s
i=1 ciq

′
i

2
= 0 ∈ F (p). Again, the anisotropy of SF (p) implies

that p divides q′1, . . . , q
′
s, a contradiction to the choice of q1, . . . , qs, q′1, . . . , q

′
s. Hence the claim.

Claim 2. iW (ϕF (p)) ≥ 1.

Let us assume that iW (ϕF (p)) = 0 and let r = dimR. The previous claim gives us the isometry

pgϕ ' R ⊥ S ⊥ pS over F (x).

Without loss of generality, we assume that 1 ∈ DF (ϕ) and thus f ∈ DF (x)(ϕ). Hence, there
exists u ∈ F [x]r, v, v′ ∈ F [x]s and q ∈ F [x] such that

(5.2) pgq2 = R(u) + S(v) + pS(v′).

We may suppose that q and the polynomials composing u, v and v′ are coprime. We extend
equation (5.2) to F (p) to get R(ū) + S(v̄) = 0. Using iW (ϕF (p)) = 0 and anisotropy of S, it
follows that u = pu1 and v = pv1 for some u1 ∈ F [x]r and v1 ∈ F [x]s. Substituting u = pu1
and v = pv1 in equation (5.2) and simplifying by p, we get S(v′) = gq2 + pl for some l ∈ F [x].
In particular, we can say that ql(ϕ) represents gq2 + pl over F [x]. We have ql(ϕ) ' pgql(ϕ),
therefore pgql(ϕ) represents gq2 + pl over F [x], i.e.,

(5.3) gq2 + pl = pgS(q1) + p2gS(q2)

for some q1, q2 ∈ F [x]s. We extend equation (5.3) to F (p) to get gq̄2 = 0, i.e., q = pq′ for
some q′ ∈ F [x]. We substitute this in equation (5.2), simplify by p and extend to F (p) to get
S(v̄′) = 0. Since S is anisotropic over F (p), we get v′ = pv′1 for some v′1 ∈ F [x]s. This is a
contradiction to the hypothesis that q and the polynomials composing u, v and v′ are coprime.
Thus, our assumption that iW (ϕF (p)) = 0 is wrong. We now have iW

(
ϕF (p)

)
≥ 1.

Claim 3. iW
(
ϕF (p)

)
= dimR

2
.

To prove the claim we proceed by induction on dimR. If dimR = 2, then we are done by
Claim 2. Suppose that dimR > 2 and the claim is true for any nondefective semisingular form
ϕ′ that has f as a norm and whose regular part is of dimension < dimR.
Let L = F (ϕ) and put ϕL ' R′ ⊥ i×H ⊥ ql(ϕ), where i = iW (ϕL). We treat two cases:

(a) If RF (p) is hyperbolic, then iW (ϕF (p)) = dimR
2
, and we are done.

(b) If RF (p) is not hyperbolic. Lemma 5.1 implies that p remains irreducible over L. Since
fL is also a norm of R′ ⊥ ql(ϕ)L, it follows by induction hypothesis that iW ((R′ ⊥
ql(ϕ))L(p)) = dimR′

2
.
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Hence, we get iW (ϕL(p)) = dimR
2
. Moreover, the extension F (p)(ϕ)/F (p) is purely transcen-

dental since iW (ϕF (p)) ≥ 1 (Claim 2). As L(p) = F (p)(ϕ), we conclude from iW (ϕL(p)) =
dimR

2
that iW (ϕF (p)) = dimR

2
, as desired.

In conclusion of Step 1, we got ql(ϕ)F (p) quasi-hyperbolic and iW (ϕF (p)) = dimR
2

, which
implies that ϕF (p) is quasi-hyperbolic. By Theorem 4.1, we conclude that p is a norm of ϕ.

Step 2. Suppose n ≥ 2 and the proposition is true for n−1. We will use an induction argument
due to Knebusch [6, Page 296-297]. Set x′ = (x2, . . . , xn), x = (x1, x

′) andL = F (x2, . . . , xn).
Let r be the degree of p considered as a polynomial in L[x1] and ζ ∈ F [x2, . . . , xn] be the
highest coefficient of p ∈ L[x1].
(1) Suppose that F is infinite:
• If r = 0, i.e., p is a constant polynomial inL[x1]. We write f = p(x′)g(x) ∈ F (x1, . . . , xn).

Since p2 does not divide f , then p does not divide all coefficients of g ∈ L[x1]. Since F is
infinite, there exists c ∈ F such that p(x′) does not divide g(c, x′) in F [x′]. By Proposition
5.3, p(x′)g(c, x′) is a norm ϕL. By induction hypothesis p(x′) is a norm of ϕL, and thus it
is also a norm of ϕK .
• If r > 0. Let p′ = ζ−1p which is a normed polynomial in L[x1]. We will first verify that
p′2 does not divide f . Assume that p′2|f , then p′|ζg and thus p|ζ2g. This is not possible
since p is an irreducible polynomial which does not divide g. Hence, p′2 - f . We have
ϕ ' fϕ ' pgϕ ' ζ−1p′gϕ. Using Step 1, we get ϕL(x1) ' p′ϕL(x1), i.e.,

pϕL(x1) ' ζϕL(x1).

We claim that ζ is a norm of ϕL. Let us take h any normed irreducible divisor of ζ in
F [x2, . . . , xn] with odd power, say ζ = hζ ′. Since p is irreducible, the polynomial h does
not divide all coefficients of p ∈ L[x1]. Since F is infinite, there exists c ∈ F such that
h does not divide p(c, x′). By Proposition 5.3, we have the isometry p(c, x′)ϕL ' ζϕL.
Hence, ζp(c, x′) is a norm of ϕL, and by induction hypothesis h is a norm of ϕL.
Since ζ is normed and any normed irreducible factor of it is a norm of ϕL, we deduce that
ζ is a norm of ϕL, and thus p is a norm of ϕL(x1).

(2) Suppose that F is finite. We change F by F (t) for some variable t over F . Hence, over
F (t) we are in condition (1), and thus p is a norm of ϕF (t)(x1,...,xn). Now applying Proposition
5.3 and substituting t = 0, we get ϕ ' pϕ over F (x1, . . . , xn). �

6. PROOF OF THEOREM 1.1 IN MANY VARIABLES

Let p ∈ F [x1, x2, . . . , xn] be a normed irreducible polynomial, L = F (x2, . . . , xn) and let ζ
be the highest coefficient of p considered as a polynomial of L[x1]. Let ϕ be a nondefective
semisingular quadratic form of dimension ≥ 3 over F which is quasi-hyperbolic over F (p) =
L(p). By Theorem 4.1 the polynomial ζ−1p ∈ L[x1] is a norm of ϕL(x1), or, equivalently ζp is
a norm of ϕL(x1). By Proposition 1.2, p is a norm of ϕ.

Conversely, if p is a norm of ϕ, then ϕF (p) is quasi-hyperbolic by [9, Theorem 1.1]. �
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